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Introduction: Previous studies showed that over the course of learning 
many neurons in the medial prefrontal cortex adapt their firing rate 
towards the options with highest predicted value reward but it was 
showed that during later learning trials the brain switches to a more 
automatic processing mode governed by the basal ganglia. Based on 
this evidence, we hypothesized that during the early learning trials the 
predicted values of chosen options will be coded by a goal directed 
system in the medial frontal cortex but during the late trials the predicted 
values will be coded by the habitual learning system in the dorsal 
striatum.

Methods: In this study, using a 3 Tesla functional magnetic resonance 
imaging scanner (fMRI), blood oxygen level dependent signal (BOLD) 
data was collected whilst participants (N=12) performed a reinforcement 
learning task. The task consisted of instrumental conditioning trials 
wherein each trial a participant choose one of the two available options 
in order to win or avoid losing money. In addition to that, depending 
on the experimental condition, participants received either monetary 
reward (gain money), monetary penalty (lose money) or neural outcome.

Results: Using model-based analysis for functional magnetic resonance 
imaging (fMRI) event related designs; region of interest (ROI) analysis 
was performed to nucleus accumbens, medial frontal cortex, caudate 
nucleus, putamen and globus pallidus internal and external segments. In 
order to compare the difference in brain activity for early (goal directed) 
versus late learning (habitual, automatic) trials, separate ROI analyses 
were performed for each anatomical sub-region. For the reward 
condition, we found significant activity in the medial frontal cortex 
(p<0.05) only for early learning trials but activity is shifted to bilateral 
putamen (p<0.05) during later trials. However, for the loss condition 
no significant activity was found for early trials except globus pallidus 
internal segment showed a significant activity (p<0.05) for later trials.

Conclusion: We found that during reinforcement learning activation in 
the brain shifted from the medial frontal regions to dorsal regions of the 
striatum. These findings suggest that there are two separable (early goal 
directed and late habitual) learning systems in the brain.
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striatum, reinforcement learning
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Over the past century associative learning and more particularly the 
role of dopamine in associative learning has been studied using mainly 
two behavioural paradigms: Pavlovian learning and instrumental 
learning. During instrumental conditioning the outcome (such as food) 
is contingent on the animal’s behaviour. The animal has to perform an 
action to receive a reward (maximize the amount of food) or to avoid 
a punishment (minimize the amount of foot shock). Therefore, in 
instrumental learning the unconditional stimulus becomes a reinforcer 
to motivate the animal to perform certain behaviours and will give the 
animal some control over the environment.

In many of the experiments that involve learning stimulus reward 
associations, learning depends not only on the sequential occurrence of 
conditional stimuli and the reinforcers but depends on the discrepancy 
between the actual occurrence and the predicted occurrence of reinforcers 
(1, 2). Although much evidence has accumulated on the role of dopamine 
in reward processing in the last 50 years, the dopamine hypothesis of 
reward has undergone refinement several times (3). These refinements 

suggest that the specific role of mesolimbic dopamine neurons may be 
more important for the acquisition of the reward-related behaviours than 
for subjective responses to rewards (3). A well-established influential theory 
about the role of dopamine in learning is that of Schultz and colleagues  
(1). According to Schultz and colleagues this theory is called the reward 
prediction-error theory and has its roots in the Rescorla-Wagner learning 
rule (4) and more particularly in the temporal-difference reinforcement-
learning model of Sutton and Barto (4). According to reward prediction-
error theory, dopamine activations to reward-predicting stimuli occur 
in almost 80% of dopamine neurons in the substantia nigra and in the 
ventral tegmental area (1, 2). It was argued that several regions receive 
this prediction-error signal, including nucleus accumbens, medial frontal 
cortex, the dorsolateral prefrontal cortex, the amygdala and the organism 
make predictions about future events (5). Schultz and colleagues proposed 
that learning occurs by sending back and forth the error-signal between 
different regions. According to Schultz and Dickinson, it is possible 
that dopamine neurons may utilize the information about predicted 
rewards for the control of goal directed behaviour, and they suggested 
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that this information helps to construct reward expectations in the form 
of predicted values whereas the prediction-error signal generated by 
dopamine neurons used to update the predicted-values associated with 
states and actions and these predicted-values might possibly stored in 
cortical and subcortical regions (1).

The evidence for the prediction error signals in humans comes only 
recently with the advances in human brain imaging techniques. Functional 
magnetic resonance imaging (fMRI) studies and their combination with 
computational models allow researchers to test specific hypotheses about 
the prediction errors and predicted-values (5). Previous studies showed 
that reward-predicting stimuli elicit neural activity during instrumental 
conditioning (6, 7), where the conditional stimuli determine not only 
the reward predicted by the stimuli but also the action required by the 
subjects (7). Because the action selection requires motor preparation and 
movement execution, it has been argued that these types of processes 
usually comprise of neuronal activity that occurs at the same time as 
viewing the decision cues (7, 8). It is important to note that sometimes the 
“predicted-values” might directly relate to specific actions which refer to 
the future rewards that are expected to be obtained after taking a specific 
action (e.g., if red light turns on always press the button with the right 
hand) and can be used interchangeably with action-values (8, 9). Previous 
studies mainly showed that predicted value activity in the striatum and 
various cortical regions (10, 11).

More recently, it was showed that much of the human motor behaviour 
and cognitive processes become automatic after substantial training (i. e., 
driving a car) (12, 13). In this context over the last ten years our research 
group examined not only the plausibility of learning by prediction errors 
(14,15) but we also tested how learning by reward and punishments 
may affect brain activity (16,17). For example, in a previous study we 
showed that prefrontal regions together with striatum could sub serve 
the executive processes involved in early learning and activity in these 
regions gradual decrease over time (17). In the current study, based on 
these previous studies, we hypothesized that whether a similar approach 
can be applied to predicted values of chosen actions. More specifically, 
we hypothesized that there should be a shift of activation from anterior 
regions of the brain specifically medial orbito-frontal cortex to posterior 
regions of the striatum (dorsal striatum; putamen) when the participants 
learned the predicted values of potential rewards and punishments. 
Secondly, as previously showed by O’Doherty and colleagues (5), we 
expected that ventral striatum (nucleus accumbens) should involve in 
coding the prediction error signal for rewards. Finally, we hypothesized 
that when the learning is completed (i.e., during late learning trials) there 
should be no prediction error signal activity in the ventral striatum.

METHODS

Participants
Fifteen healthy normal right-handed volunteers (8 male, 7 female; 
mean age: 25, range: 22-28) all University students were recruited to the 
experiment, but only 12 participants (6 male, 6 female) were included in 
the analysis. Three of the participants were excluded from the analysis, 
one due to excessive movement inside the scanner (movement greater 
than 6 mm) and the others due to the loss of behavioural data. Based on 
participants verbal reports those with prior history of neurological and 
psychiatric illness were excluded from the study. All participants filled 
a written informed consent form before fMRI measurements, and all 
received both written and verbal requests, which outlined the purpose and 
nature of the study, before the fMRI session. They were debriefed after the 
experimental session, and paid according to their performance in the task. 
The study was conducted in accordance with the Declaration of Helsinki 
and was approved by the Bedfordshire NHS Ethics committee board.

Task
The whole experiment is an event-related fMRI study consisted of 3 
sessions, separated by an average of ~2 min. In each session, the color of 
the stimuli indicated the trial type, except for the neutral trials in which it 
remained the same for all three sessions (see Figure 2). Within the sessions, 
each trial was an instrumental learning task involving monetary feedback 
as a reinforcer. Each trial began with simultaneous presentation of one of 
three pairs of stimuli (all symbols were letters taken from Agathodaimon 
font), and each pair of symbols signified the onset of three trial types: 
Reward (potential monetary gain), Avoidance (potential monetary loss), 
and Neutral, whose occurrence was fully randomized throughout the 
experiment. The participant’s task in each trial was to choose one of the 
two symbols by selecting the right or the left key button from the response 
box. For each pair of stimuli, positions of the symbols (right or left) were 
also counter balanced within the session. When the trials started, a fixation 
cross (null event) was shown at the centre of the screen for 0.5 s indicating 
the start of the trial. This was replaced by the conditional stimulus (two 
symbols) presented on the screen for 4 s to the left and right of where 
the cross-had previously been. The participants had to choose which 
symbol would be rewarded in this 4 s time period. Once the symbol was 
selected, the chosen symbol was shown by an arrow for 0.5 s followed by 
the outcome. Between the selected symbol and outcome screens, there 
was a random inter stimulus interval (ISI) of about average ~2 s for the 
scanner trigger. The outcome for the participants’ choice reward (£1), 
punishment (-£1) and neutral outcome was shown on the screen for 3 
s. The amount of reward and punishment was determined based on the 
previous studies (18) and recommendations of ethical guidelines (19). No 
additional payment was made to the participants. When the participants 

Figure 1. Schematic of the experimental design. Gain trials (green), loss trials (red) and 
neutral trials (white) were represented in different colors and symbols. 

Figure 2. A) In the model Independent classic correlative paradigm, the observable 
variables are directly correlated against fMRI data. B) In the model-based analysis 
the hidden (proxy) variables were calculated from the behavioural responses of the 
participants and then convolved against fMRI data. 
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failed to press either button they were instructed at the outcome feedback 
that they will receive a neutral outcome for the gain pair, or (-£1) for the loss 
pair. All three trials types were pseudo randomly intermixed throughout 
the sessions. In the reward trials, when the participants choose the correct 
symbol (High probability option) then they received monetary reward with 
0.8 probability and received neutral feedback with a probability of 0.2. On 
the other hand, following the choice of incorrect symbol (low probability 
option), participants received a reward with a probability of 0.2 and neutral 
outcome with a probability of 0.8. Similarly on the loss trials, if participants 
chose the correct/optimal symbol (high probability option), they received 
neutral outcome with 0.8 probability, and a loss outcome with a probability 
of 0.2, whereas the choice of the incorrect symbol (low probability option) 
gave a loss of (-£1) with probability 0.8, and a neutral outcome with 
probability 0.2. On neutral trials, participants always received a neutral 
outcome independent of the symbol choice. All participants underwent 
three ~13 min scanning sessions, each consisting of 60 trials (20 trials per 
condition). Prior to the experiment, participants were instructed that they 
would be presented with three pairs of stimuli in which the colour of the 
stimuli would indicate whether it was a reward, loss or neutral trial. They 
were also instructed that depending on their choices, they would win or 
lose money or the outcome would be neutral. They were not told which 
coloured pair of stimuli was associated with a particular type of outcome. 
All participants were instructed to win as much as possible. Before the 
experiment, they were told that they could earn a maximum of £30 if they 
choose the correct response in all trials; otherwise, their earnings would 
depend on their performance in the experiment.

Functional Magnetic Resonance Image Acquisition
The functional imaging was conducted using 3-Tesla Siemens Magnetom 
MRI scanner to acquire gradient echo T2* weighted echo-planar (EPI) 
images with BOLD (Blood Oxygenation Level Dependent Signal) contrast 
(3x3x3-mm voxel size). Imaging parameters were optimized to minimize 
signal dropout in medial ventral prefrontal and anterior ventral striatum: 
we used a tilted acquisition sequence at 30° to the AC-PC line. Each 
volume was comprised of 36 axial slices of 3-mm thickness and 3-mm in 
plane resolution with a TR time (repetition time) of 3 s. The flip angle was 
90 degrees. T1 weighted structural images (1x1x1-mm voxel size) were 
also acquired for each participant. Head movement was minimized by 
head padding.

Pre-processing of Functional Magnetic Image Data
Image analysis was performed using Statistical Parametric Mapping 
(SPM8) (Wellcome Department of Imaging Neuroscience, Institute of 
Neurology, London, United Kingdom) software. For all participants, the 
images were realigned according to the first volume in order to correct 
for motion in the scanner. For all participants, anatomical images 
were co-registered to functional EPI images, and were normalized 
to a standard EPI template. Spatial smoothing was applied using a 
Gaussian kernel with full width half-maximum (FWHM) of 8 mm for 
each participant’s data.

Model-Based Analysis of Functional Imaging Data
The classical correlative paradigm in fMRI simply refers to the 
manipulation of the independent variables of interest and observing 
the changes in BOLD response. Model independent paradigms (e.g., 
epoch analysis) have been useful and are still used by many researchers 
(13). Nevertheless, it is not good enough to understand value based 
decision-making and underlying neurocomputational principles (20). 
According to previous studies most human decisions are usually guided 
by subjective variables that are not directly observable or controllable by 
the experimenter (20). These type of variables might depend on a variety 
of factors such as the subjects’ choice history or reward experience and 
computational models of cognitive processes compute such hidden 
variables (20, 21). Examples of model-based analysis can also be found for 

electrophysiological recording studies from behaving monkeys (16). Also 
these subjective variables differ proportionately to individual differences 
(e.g., the learning rate). These types of questions have guided researchers 
to use solutions like model-based techniques. The essential point of the 
model-based analysis is not whether the brain uses that particular model 
or not, but most importantly it provides a framework for interpretation 
and therefore study hidden decision variables and their neural correlates 
that are critical for learning (22).

The central approach in model-based fMRI is to use the behavioural 
responses of a participant to estimate the values of the hidden variables 
of a model over time. In the model-based analysis subjects’ behavioural 
responses were entered into a computational model (i.e, rescorla-wagner 
learning rule), and the computational model (i.e., implemented by a 
third party program like matlab) calculates the proxy subjective decision 
variables (i.e., the prediction error response).

It is important to note that in every computational model there are free 
parameters such as the learning rate or exploration rate. In the case of 
reinforcement learning algorithms that need to be calculated with model 
fitting techniques (e.g., maximum likelihood, or mean least-squares 
procedure). After all the decision variables are identified and trial to trial 
parameter values are estimated then they have to be convolved with the 
hemodynamic function by using parametric modulation and regressed 
against the observed bold signal. The hidden variables are then correlated 
with fMRI data.

In spite of differences in choice of models, most fMRI studies use similar 
analysis procedures (i. e., Statistical Parametric Mapping software, https://
www.fil.ion.ucl.ac.uk/spm/). In the standard data analysis procedure, 
images are realigned, spatially normalized to a standard template (for 
instance MNI or Talairach) and spatially smoothed with a Gaussian kernel. 
Later, the time series in each session is high-pass filtered to remove 
potential slow scanner drift or low frequency noise such as heartbeat. 
After this pre-processing procedure, a statistical linear regression model 
is fitted to the data. At this point, each trial is represented in the design 
matrix and the prediction error signal is treated as a parametric modulator 
to the design matrix. It is important to note that both of the decision 
variables and free parameter values has to be computed by a second 
party program (e.g. Matlab, www. mathworks. com). One of the most 
important issues in calculating the prediction error signal and predicted 
value is the process of finding the best choice for free model parameters 
(learning rate and exploration parameter), which were summarized in the 
following section.

RESULTS

Behavioural Analysis
In order to understand whether there is a statistically significant 
performance difference between the early (first 10 trials of each 
condition) and late trials (last 10 trials of each condition), we compared 
the differences in response times during action selection using a paired 
t-test. The reason for the first and last half-split is due to participants 
learning performance where participants reach the asymptotic levels 
after the first 10 trials (please see Figure 3 and Figure 5). Over the course 
of the experiment mean response time data for early and late learning 
trials showed a statistically significant difference between all conditions 
(reward condition t

(11)
=3.105, p<0.01, two tailed, avoidance condition 

t
(11)

=4.35, p<0.01, two tailed, neutral condition t
(11)

=5.503, p<0.01, two 
tailed). These results indicate that during learning participant’s response 
becomes quicker which is an indication of shift towards habit formation 
or rather automaticity in action selection (Figure 3).
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Model Fitting Procedure
During model fitting we estimated each individual’s learning rate, α and 
exploration parameter, β. Here, the updating of the predicted value of 
the chosen symbol is based on the Rescorla-Wagner prediction error. In 
order to do that, a softmax action selection rule was used for updating 
the probability of selected actions. For example, if the participant chose 
the high probability-option the probability of choosing that option is 
calculated by the following equation:

In the above equation β is the inverse temperature, which inversely 
relates to the randomness in action selection. For example, high β means 
higher probability of random action selection (β>0) which is estimated 
for each participant.

The predicted-values or so-called Q-values inspired from the Q-learning 
algorithm, high probability (hp) and low probability (lp) were set to 0 
at the beginning of each learning session assuming the participants do 
not have any a priory knowledge about the stimulus values. When the 
outcome for the particular symbol was presented, the value of the chosen 
option was updated by the following equation: 

In the above equation alpha and delta refers to learning rate and 
prediction error respectively. To determine the parameters with which 
the model best fit with the behavioural data of participants’ actual 
choices, we calculated the likelihood function l(Q|z) for each set of 
parameters (Q=α, β) with participants actual choices (z) using a custom 
Matlab program (https://www. mathworks. com). The model fitting 
procedure is as follows: we first calculate the action values with using 
all possible combinations of parameter values (incremental search). Then 
we estimate the probabilities for all possible parameter values for each 
trial. Then from the probabilities that a participant can select the symbol 
a in trial i was inserted in the likelihood function. The following equation 
shows the likelihood function, which is the product of the probabilities in 
all trials, included in the parameter space, z.

When we performed a group statistical analysis for the differences 
in learning rate and exploration parameter, we found that there are 
no significant differences in learning rate between reward (monetary 
gain as a positive reinforcer) and avoidance (monetary loss as positive 
punishment) condition (p>0.05, two tailed), but as expected there is 
statistically significant difference in the amount of exploration of the 
other option in the avoidance condition (Figure 4). Based on the higher 
exploration parameter for avoidance condition we can conclude that 
participants explore different options more when they were faced with 
the option that indicate potential losses (t

(11
)=4.3 p<0.05, two tailed).

Figure 3. Plot of the reaction times for the three conditions regardless of the outcome 
received. Participants were significantly slower in the early trials compared to later trials 
for all conditions. Bars represent standard errors. (**) Represents significance (p<0.05, two 
tailed). The data represented above belongs to the average of 12 participants.

Figure 4. The figure shows that there were no differences in the learning rate of 
participants between the gain and the loss condition, but there is significant difference in 
the amount of exploration they perform.

Figure 5. Behavioural model fitting results. 
Left: observed behavioural choices for reward 
trials (green) and avoidance trials (red). The 
learning curves depict, trial by trial, the 
proportion of participants that chose the high-
probability option (symbol associated with a 
probability of 0.8 of winning £1) for the reward 
trials (green circles), and the high-probability 
option (symbol associated with a probability 
of 0.8 of losing £1) in the avoidance trials (red 
circles). Right figure: modelled behavioural 
choices for gain and loss condition. The 
learning curves represent the probabilities 
predicted by the computational model. Circles 
representing observed choices have been left 
for the purpose of comparison. 
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After estimating each participant’s learning rate and exploration 
parameter, we inserted them into the reinforcement-learning model 
that was summarized above and calculated the prediction-error (δ) and 
predicted value of choosing a particular option (Q

hp
). Also in order to 

validate how well the reinforcement-learning model fitted with actual 
choices of participants we looked at the model estimated probabilities 
of the selected options and actual choices of the participants as can be 
seen from Figure 5.

The statistical analysis comparing early and late predicted values showed a 
significant difference for the reward condition (t

(11)
=2.9 p<0.05, two tailed) 

(Figure 6). The average predicted value of the chosen option (Q-value 
chosen) in the late trials was significantly greater than the average in the 
early trials. However the early versus late predicted values for the loss 
trials were not significantly different from each other (t

(11)
=1.056 p>0.05, 

two tailed).

Figure 6. Average changes in the predicted value of chosen option for the early versus 
late trials for the reward and avoidance condition. 

Functional Magnetic Resonance Imaging Results
Using the model parameters described above, we took the trial by-trial 
predictions of our computational model for the predicted-values and 
prediction errors for each individual and entered these into first level 
analysis as a regression model against the fMRI data at the time of stimulus 
presentation and at the onset of reward/punishment receipt respectively. 
It is important to note that early (first 10 trials) and late prediction values 
(last 10 trials) and prediction errors are entered in to the design matrix 
as separate contrasts. Later on all first level analysis for each individual 
were carried in to second level group analysis. For the group level 
analysis, in order to compare the difference in activity for early versus 
late contrasts separate ROI (region of interest) analyses were performed 
for each anatomical sub-region using MarsBaR (marsbar.sourceforge. 
net) tool for statistical parametric mapping software. In the anatomical 
ROI analysis medial frontal cortex and several sub-compartments of 
the basal ganglia were used. The specific selection of those ROI regions 
was based on the previous studies, which showed significant change in 
BOLD signal for coding reward prediction errors and predicted values of 
reward outcomes (23). The ROI for the sub-regions of basal ganglia was 
taken from the BGHAT template (24) and the ROI for the medial orbito 
frontal cortex is taken from the AAL atlas (25). However, there were no 
previously defined ROI’s in the MNI (Montreal neurological institute) 
space for nucleus accumbens (NAcc) therefore we have to define NAcc 
by drawing by hand using MRIcron (http://www.mccauslandcenter. 
sc. edu/mricro/mricron). The hand drawn NAcc ROI is smoothed with 
a 3 mm Gaussian kernel and normalized to the Montreal Neurological 
Institute (MNI) template. There are 12 regions of interest in total (6 in 
each hemisphere) and each of these regions was tested separately for 8 
contrasts, namely early reward predicted value, late reward predicted-

value, early loss predicted value, late loss predicted value, early reward 
prediction error, late reward prediction error, early loss prediction error, 
late loss prediction error. This makes a total of 96 test altogether.

The first contrasts that we looked at were the predicted-values of 
chosen options for reward trials, where we tested each anatomical ROI 
(including left and right hemispheric regions) separately (see Table 1 for 
the T-values). The results of the early reward predicted values showed 
significant positive BOLD change in the medial frontal cortex only and 
late reward predicted value showed significant change in the bilateral 
putamen only (Figure 8).

We also looked at percent signal changes for the predicted value of 
rewarding stimuli (see Figure 9). We found that the medial frontal cortex 
is sensitive to reward predicted values early in learning but putamen is 
sensitive to later in learning

Secondly, we tested for statistically significant changes in signal in these 
ROIs for early and late loss predicted-values. None of the ROI’s showed 
significant signal change for the early loss predicted-value (p<0.05, 
bonferroni corrected). For the late loss predicted-value we found 
significant signal change (p<0.05, bonferroni corrected) in the left globus 
pallidus internal segment (Gpi). The comparison of this region with the 
late reward predicted-value showed that this region was only sensitive to 
loss predicted values.

Finally, we carried out the same analysis for loss and reward prediction 
errors. We found that both reward and loss prediction errors produce 
significant effects only during the first 10 trials and no significant effects 
were found in any of the ROIs’ during late learning trials. For the reward 
prediction error during early trials, significant activity was found in the 
bilateral NAcc and for the loss prediction error, we found significant 
activity in the bilateral caudate nucleus (Figure 11). We also looked for 
the percent signal change in the NAcc for the loss prediction errors and 
vice versa for the caudate nucleus for reward prediction error in order to 
examine the possibility that these regions are specific for loss (Figure 11). 
We found that the caudate showed negative BOLD signal for the reward 
prediction error and NAcc showed no percent signal change.

Table 1. Results of the ROI analysis

Laterality t-statistic p-value

Predicted Value (Early Reward Trials)

Frontal_Med_ORB_L L 2.2 0.029

Frontal_Med_ORB_R R 2.67 0.014

Predicted Value  (Late Reward Trials) 

Putamen L 2.33 0.019

Putamen R 1.85 0.045

Predicted Value (Late Avoidance Trials) 

Gpi L 2 0.035

Early Reward Prediction Error

NAcc L 2 0.024

NAcc R 4.43 0.002

Early Avoidance Prediction Error 

Caudate L 2.86 0.01

Caudate R 2.78 0.011

Frontal_Med_ORB_L, left medial orbito-frontal cortex; Frontal_Med_ORB_R, right 
medial orbito-frontal cortex; Gpi, globus pallidus internal segment; NAcc, nucleus 
accumbens. P, statistical significance.
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Figure 7. ROI’s used in the fMRI analysis. A) BGHAT ROI template for the basal ganglia sub regions. B) Hand drawn ROI for the NAcc. C) Overlapping 
regions between the ROIs for NAcc, caudate and putamen. D) Medial orbito-frontal cortex ROI based on AAL atlas. 

A

B

C

D

Nacc Template for Region of Interest

Overlap Between NAcc and BGHAT Region of Interests

AAL Atlas Medial Orbito Frontal Cortex  Region of Interests

DISCUSSION
Understanding how learning related changes influence brain activity 
is an important research question (17) and covers a broader research 
field including the effects of potential gains and losses as well as 
their opponents (16). In the current study, we identified brain areas 
responding to changes in predicted-values and prediction errors for 

early versus late learning trials. We found that during early learning the 

reward predicted values activate the medial-orbito frontal cortex but 

later in learning this activity shifts to putamen. We also found that left 

globus pallidus shows significant activity for the loss predicted-values 

during late learning trials. In addition to that, we also replicated the 

well-established findings that showed prediction error signal in the 

BGHAT Template for Region of Interest Analysis
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Figure 8. Predicted-values of chosen options during 
early and late reward trials. a) Activity in the medial 
frontal cortex correlated with the reward predicted-
value in the early learning trials. b) Activity in the 
right and left putamen is correlated with the reward 
predicted-value in the late learning trials. The gray mesh 
frame includes the medial prefrontal cortex ROI (AAL 
template), the entire basal-ganglia (BGHAT template) 
and the NAcc ROI. The activations in each voxels have 
arbitrary dimensions based on multicolor software 
(www.cns.atr.jp/multi_color_download). 

Figure 9. Percent signal changes for predicted-value in 
the medial-orbito-frontal cortex and putamen. Percent 
signal changes calculate using the whole ROI region.

A

B

First 10 Trials, Predicted-Value for Chosen Options, Reward Condition

Last 10 Trials, Predicted-Value for Chosen Options, Reward Condition

A

B

Figure 10. A) BOLD activation for loss predicted-value 
in the left globus pallidus internal segment. The activity 
in the ROI overlaid on the mesh frame (gray) that is 
created by the multicolor software (www.cns.atr.jp/
multi_color_download). B) Percent signal change in the 
left Gpi for the first and the last ten trials. Bottom right. 
Percent signal change for the last ten trials of reward 
predicted-value (yellow bar) and loss (green) predicted 
value.

Last 10 Trials, Predicted-Value for Chosen Options, Avoidance Condition
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Figure 11. A) Activity in the bilateral NAcc for the reward prediction error during early learning. B) Percent signal change for the first and the last 
ten trials for the reward prediction error (figure on the left). Percent signal change for the reward and punishment prediction error for the first ten 
trials (figure on the right) C) Activity in the bilateral caudate nucleus for the loss prediction error during early learning. D) Percent signal change for 
the loss prediction error in the caudate nucleus for the first and last ten trials of learning.

A

B

C

D

First 10 Trials, Reward Prediction Error

First 10 Trials, Loss Prediction Error

Naccc Reward PE, First and Last 10 trials Naccc Reward & Punishment PE, First 10 trials

Caudate Punishment PE, First and Last 10 trials Caudate Reward & Punishment PE, First 10 trials
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ventral striatum for early learning trials only, whereas loss prediction 
error activated caudate nucleus and showed no prediction-error related 
activity during late learning trials.

Recent studies have suggested that there might be more than one type of 
value signal utilized by the brain (26). It was suggested that the predicted-
value signals are involved in the processes of evaluating the anticipated 
outcome (8). The results of the current study showed significant 
dissociation between medial-orbito-frontal cortex and putamen 
supporting the hypothesis that separate brain regions are involved in goal 
directed and habitual learning. Correspondingly, it has been suggested 
that the sensori-motor striatum is important in chunking motor patterns 
in the form of habits and the associative-striatum is important in goal 
directed learning (26).

Predicted Values in the Striatum
Regarding the findings related to late predicted values in the dorsal 
striatum many studies suggested that pre movement firing of striatal 
neurons usually influenced by reward predicting cues (27). For example, 
earlier studies showed that neurons that fired to initiate movements 
showed greater excitation when the instruction indicated that the 
movement was to be rewarded (11). These early studies showed that 
before the motor actions took place striatal neurons enhanced their firing 
rate by the information that movement will result in a rewarding outcome 
(6). This enhancement probably serves to increase the probability of 
movement in the direction that maximizes reward (e.g., predicted-value 
of the chosen option or action).

For many researchers the dorsal striatum is the key area for coding 
predicted-values of options and actions. Perhaps because it has been 
thought that the main function of the dorsal striatum is related to the 
preparation and execution of movements (28, 29). More recently Hori 
and colleagues studied how dorsal-striatal neurons code for action-
values by recording from the putamen of monkeys before and after 
action execution in a go-nogo task (29). They showed that most of the 
neurons (~50%) in the putamen code for action-values before and after 
action execution. In another experiment, Pasquereau and colleagues 
(30) compared action-value (i. e. the action values prior to action 
execution) and chosen-value (values at the time of action execution) in 
the putamen and globus pallidus internal segment (Gpi). They showed 
that in the period of learning the number of action value neurons in the 
Gpi increased firing and both of the structures influenced by incentive 
value during the execution of motor responses. For some researchers 
the increase in the number of neurons that discharge for action value 
is an indication of automatization during learning (31). Human brain 
imaging experiments also support the findings on predicted values in the 
basal ganglia (20). Overall, these studies showed converging evidence for 
representation of predicted values in the basal ganglia.

Predicted Values in the Cortex
Electrophysiological studies showed predicted-value type of activity 
in various cortical regions such as the dorso-lateral-prefrontal cortex 
(DLPFC), parietal cortex, rostral anterior cingulate cortex, and frontal eye 
fields (FEF) (32). Moreover, by using a computational model of choice 
behaviour they showed that this activity was highly influenced by the 
history of actions and rewards.

With the advances in human brain imaging recent studies showed 
predicted-value and action-value activity in various cortical regions. 
Some of these studies showed activity in ventro-medial prefrontal 
cortex and cingulate cortex (33,34). These findings converges with the 
earlier electrophysiological studies in monkeys (35).  Even though this 
distributed predicted-action-value network is not easy to interpret, 
one can easily see that parietal cortex and frontal eye fields can only 

code for effector-specific predicted values. Also, perhaps because of the 
somatotopic body representations in the striatum, it is possible that the 
striatum responds to predicted values from all motor modalities in an 
effector-dependent way.

CONCLUSION
Studies on cortico-striatal anatomy showed that the rostral striatum 
has connections to orbito frontal cortex via the limbic loop and 
sensori-motor striatum involving putamen has connections to motor 
and supplementary motor areas via the motor loop (20). Based on 
the anatomical connections it is plausible that during early in learning 
medial-orbito-frontal cortex might be engaged in exploring the response 
alternatives whereas putamen might be fine-tuning motor movements 
during later trials.

Finally, although this study specifically focused on the neural correlates 
of predicted values, it is highly related to computational models of 
reinforcement learning and raises the question about the performance 
of alternative computational models. These alternative models will be 
tested in the future and the reader should be cautious in interpreting the 
results due to limited sample size.
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