Brainstem Reflexes in Systemic Lupus Erythematosus Patients Without Clinical Neurological Manifestations

Celal SALCİNİ1,2*, Birgül BAŞTAN3*, Gülün SUNTER1, Pınar KAHRAMAN KOYTAK1, Orhan YILMAZ1, Tulin TANRIDAĞ1, Önder US1, Kayihan ULUÇ1

1Department of Neurology, Marmara University School of Medicine, Istanbul, Turkey
2Department of Neurology, Üsküdar University, NPIstanbul Neuropsychiatry Hospital, İstanbul, Turkey
3Clinic of Neurology, Haseki Training and Research Hospital, İstanbul, Turkey

INTRODUCTION
Systemic lupus erythematosus (SLE) is a chronic inflammatory disease that can affect multiple organ systems. One of the main clinical syndromes of SLE is nervous system involvement, both central and peripheral. The most common neuropsychiatric manifestations are cognitive dysfunction, headache, seizures, stroke, and peripheral neuropathy. These manifestations are seen in 37–95% of SLE patients (1-4). However, neuropsychiatric signs may be clinically silent. Therefore, investigations such as neuroimaging and electrophysiological recordings are warranted to delineate these clinically silent abnormalities.

Among the CNS syndromes of SLE, brainstem involvement is not rare (2,3,5,6,7,8). For assessing the brainstem functions, electrophysiological recordings of brainstem reflexes are still valuable tools. The best-studied brainstem reflexes are blink reflex (BR) and masseter inhibitory reflex (MIR) recordings.

METHODS
Thirty-eight SLE patients and 35 healthy volunteers participated in this study. Peripheral nerve conduction and brainstem reflexes were evaluated by performing nerve conduction studies (NCSs) and blink reflex (BR) and masseter inhibitory reflex (MIR) recordings.

RESULTS: Eleven patients (29%) had an abnormality in at least 1 NCS parameter, and 1 (2.6%) patient was diagnosed with polyneuropathy. The number of patients with abnormal BR and MIR was 23 (60.5%) and 14 (37%), respectively. The contralateral R2 latency of BR and the silent period 1 (SP1) latency of MIR were significantly prolonged in the patients compared with the controls (p=0.015 and p<0.001, respectively).

CONCLUSION: This study showed that irrespective of peripheral nervous system involvement, brainstem reflexes could be affected in SLE patients even without clinical neurological findings. Brainstem reflex abnormalities suggested that the functional integrity of the inhibitory or excitatory interneurons in the lateral caudal pons and lateral medulla is disturbed in SLE patients.

Keywords: Systemic lupus erythematosus, brainstem reflexes, electroneuromyography, peripheral nervous system

ABSTRACT
Introduction: We aimed to assess central and peripheral nervous system involvement in systemic lupus erythematosus (SLE) patients without any neurological signs and symptoms by performing electrophysiological investigations.

Methods: Thirty-eight SLE patients and 35 healthy volunteers participated in this study. Peripheral nerve conduction and brainstem reflexes were evaluated by performing nerve conduction studies (NCSs) and blink reflex (BR) and masseter inhibitory reflex (MIR) recordings.

Results: Eleven patients (29%) had an abnormality in at least 1 NCS parameter, and 1 (2.6%) patient was diagnosed with polyneuropathy. The number of patients with abnormal BR and MIR was 23 (60.5%) and 14 (37%), respectively. The contralateral R2 latency of BR and the silent period 1 (SP1) latency of MIR were significantly prolonged in the patients compared with the controls (p=0.015 and p<0.001, respectively).

Conclusion: This study showed that irrespective of peripheral nervous system involvement, brainstem reflexes could be affected in SLE patients even without clinical neurological findings. Brainstem reflex abnormalities suggested that the functional integrity of the inhibitory or excitatory interneurons in the lateral caudal pons and lateral medulla is disturbed in SLE patients.

Keywords: Systemic lupus erythematosus, brainstem reflexes, electroneuromyography, peripheral nervous system
Electrophysiological Investigations

All electrophysiological investigations were performed using a Medelec Synergy electromyography (EMG) device (Medelec Synergy EMG, Oxford Instruments Medical, UK).

Nerve Conduction Studies (NCSs)

Surface bar recording and bipolar surface recording electrodes (Teca Corp. Pleasantville, New York) were used in NCSs. Sensory NCSs of the median plantar, superficial peroneal, ulnar, and radial nerves were performed. Motor NCSs were performed on the posterior tibial, peroneal, and median motor nerves. Compound muscle action potential (CMAP) amplitude, distal latency, conduction velocity, and minimum F-response latency and F-wave persistence were calculated for motor NCSs. Minimum F-response latency was obtained using 20 stimulations. The onset and peak latency, onset and peak nerve conduction velocity (NCV), and amplitude were measured for sensory NCSs in the upper and lower extremities. The pattern was accepted as an “absent SNAP” if there was no recognizable SNAP or if SNAP was not repeatable and constant. A signal averaging of 8 responses was used for SNAP. In order to obtain the maximum SNAP, the stimulus intensity was supramaximal, i.e., at least 3 times the sensory threshold. The filter settings were 5 Hz–10 kHz for motor studies and 20 Hz–2 kHz for sensory studies. The skin temperature was maintained between 31°C and 34°C in all the subjects.

Brainstem Reflexes

BRs and MIRs were studied. BR studies were performed with the subject lying down. Electrical stimuli were applied to the supraorbital nerve at the supraorbital foramen and eyebrow. Bilateral active and reference surface electrodes were placed over the orbiticularis oculi belly and 1 cm lateral to the rim of the eye, respectively. At least 10 signals were superimposed. The stimuli were randomly delivered with a minimum interval of 10 s to avoid habituation. The stimulation intensity was 2–3 times (8–14 mA) higher than the threshold, and the stimulation duration was 0.2 ms. Filters were set at 20 Hz to 10 kHz, the sweep speed was 100 ms, and the sensitivity was 100 μV.

MIR was recorded by applying electrical stimulation to the mentalis nerve while the patient was lying supine with a clenched jaw. Active electrodes were placed anterior to the zygomatic arch on the masseter belly. Reference electrodes were 2–3 cm caudal to the active ones. Stimuli were applied randomly, and the last 5 of the 10 responses obtained were superimposed. The filter settings were 20 Hz–5 kHz, the sweep speed was 20 ms, and the sensitivity was 100 μV.

Statistical Analysis

Statistical analyses were performed using GraphPad InStat, version 3.05 for Windows (GraphPad Software, San Diego, CA). Normal distribution of the data was determined using the Kolmogorov–Smirnov test. Depending on the normality of the distribution, either raw data or logarithmically transformed data were used. Student’s t test and Mann–Whitney U test were used for comparison between groups. Categorical variables were compared using the chi-square test. A p value of less than 0.05 was accepted as significant.

RESULTS

The mean age of the patients was 38.6±10.1 years, and the age of the control group was 37.6±8.5 years (p=0.663). There was no significant difference between the 2 groups with regard to sex, height and body weight (Table 1). The mean number of the ACR SLE criteria fulfilled was 5.8±1.05.

<table>
<thead>
<tr>
<th>Patients (n=38)</th>
<th>Controls (n=35)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female/Male</td>
<td>36/2</td>
<td>31/4</td>
</tr>
<tr>
<td>Age (years)*</td>
<td>38.6±10.1</td>
<td>37.6±8.5</td>
</tr>
<tr>
<td>Height (cm)*</td>
<td>163±0.05</td>
<td>161±0.07</td>
</tr>
<tr>
<td>Weight (kg)*</td>
<td>66.8±13.7</td>
<td>68.4±12.3</td>
</tr>
</tbody>
</table>

* Mean±standard deviation

DISCUSSION

The aim of this study was to evaluate the electrophysiological involvement of SLE patients without neurological findings. We found that more than half of the studied SLE patients had abnormal brainstem reflexes. On the other hand, the polyneuropathy rate was not high in the asymptomatic SLE patients. Among the neuropsychological tests, the BR showed the highest abnormality. Our findings may imply a subclinical involvement in the brainstem pathways in at least some of the SLE patients.
Table 2. Blink reflexes in patients and control subjects

<table>
<thead>
<tr>
<th>Blink Reflex</th>
<th>Controls Mean±SD</th>
<th>Patients Mean±SD</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1 Latency</td>
<td>10.71±0.78</td>
<td>10.93±0.69</td>
<td>0.083</td>
</tr>
<tr>
<td>iR2 Latency</td>
<td>30.98±3.57</td>
<td>31.49±3.78</td>
<td>0.407</td>
</tr>
<tr>
<td>cR2 Latency</td>
<td>32.06±3.67</td>
<td>33.69±4.29</td>
<td>0.015</td>
</tr>
<tr>
<td>iR2−cR2 Latency difference</td>
<td>1.08±1.49</td>
<td>2.27±2.02</td>
<td>0.005</td>
</tr>
<tr>
<td>LiR2−RiR2 Latency difference</td>
<td>0.26±3.79</td>
<td>0.87±3.56</td>
<td>0.479</td>
</tr>
<tr>
<td>LcR2−RcR2 Latency difference</td>
<td>0.2±3.86</td>
<td>1.01±3.86</td>
<td>0.370</td>
</tr>
</tbody>
</table>

Figure 1. Blink reflex of a patient revealing abnormally prolonged cR2 latency.

Another aim of our study was to detect subclinical central nervous system involvement in SLE patients with brainstem reflex studies. Brainstem reflex studies are easily applied, reproducible and non-invasive investigations. These studies have been evaluated in many diseases, such as trigeminal and facial nerve lesions, polynuropathy, hemifacial spasm, brainstem lesions, Parkinson’s disease and multiple sclerosis, so far (16,17,18,19,20). They are influenced both by lesions in the supranuclear pathways and in the brainstem itself. To the best of our knowledge, our study was one of the first studies assessing the electrophysiological circuits of the central nervous system in SLE patients. Gaber, et al. (21) assessed the presence of asymptomatic cranial neuropathy in SLE patients by evaluating BR and evoked potentials, and they found an association between the abnormal electrophysiological findings and antiribosomal P antibody levels. In our study, the sensory and motor nerves were both affected, and most of these NCS abnormalities suggested an axonal degeneration with reduced nerve action potential amplitudes. Because we studied patients without neurological complaints, we planned to follow up with the patients to determine the electrophysiological changes over time and to observe the clinical correlations of these findings.

Although our study is limited because of the relatively small sample size, it is, to the best of our knowledge, one of the first studies utilizing brainstem reflexes in SLE patients. Further studies with a prospective design assessing clinical features with electrophysiological and imaging investigations would yield a better neuroanatomical correlation of these findings and would provide more precise topodiagnostic information about CNS dysfunction in SLE patients.

In conclusion, this study shows that both the central and peripheral nervous systems may be affected in SLE patients, even without any clinical neurological manifestations. Brainstem reflex abnormalities suggest that the functional integrity in the lateral caudal pons and lateral medulla oblongata is impaired.

Ethics Committee Approval: Authors declared that the research was conducted according to the principles of the World Medical Association Declaration of Helsinki “Ethical Principles for Medical Research Involving Human Subjects”, (amended in October 2013).

Informed Consent: Written informed consent was obtained from all participants who participated in this study.

Peer-review: Externally peer-reviewed.

Author Contributions: Concept – C.S., K.U.; Design – C.S., K.U.; Supervision – C.S., K.U., B.B., PKK; Resources – C.S.; Materials – C.S.; Data Collection and/or Processing – C.S., G.S., O.Y.; Analysis and/or Interpretation – C.S., K.U.; Literature changes in consciousness and cognitive state). However, when only cR2 is affected, as suggested by the crossed type of the abnormality hypothesis, it is better to localize the pathology to the brainstem and restrict it to the caudal pons and medulla oblongata rather than the suprasegmental levels. Therefore, our findings suggest that there is an anomaly that electrophysiologically affects the polysynaptic chains in the medulla oblongata and caudal pons in SLE patients. In addition, the lack of a significant R1 latency prolongation further excludes involvement of the mid-pons. To verify this hypothesis, studies with a greater number of patients should be undertaken, and an anatomical correlation of the findings should be performed using neuroimaging investigations. While performing electrophysiological investigations, the priority is identifying individual abnormalities rather than comparing the groups. In this sense, 60.5% of the SLE patients had abnormalities in at least 1 BR parameter. The most common abnormalities were delayed cR2 latency and prolonged LiR2−cR2 and RiR2−cR2. These findings were consistent with the results obtained from the group comparisons.

MIR, which is elicited by the stimulation of the mental or supraorbital nerves, consists of 2 phases of suppression (SP1 and SP2). The MIR circuit is supposed to extend from the pons to the medulla oblongata. Compared with the controls, our findings demonstrated a significant prolongation of the bilateral SP1 latency in the patient group (p<0.001). However, the SP2 latencies did not differ between the 2 groups (p=0.539). In terms of the individual abnormalities, SP1 latency prolongation was observed in 11 patients, whereas SP2 latency prolongation was found in 3 patients. The reason for detecting more frequent SP1 latency abnormalities is that the SP1 response is mediated to the ipsilateral trigeminal nucleus through a mono- or oligosynaptic circuit and is therefore quantitatively more sensitive, while the SP2 response is elicited by a more complex circuit with a more caudally located polysynaptic chain of interneurons. In addition, the neurons that mediate the SP2 response are thought to be better protected because of unknown reasons (22,23).

Although our study is limited because of the relatively small sample size, it is, to the best of our knowledge, one of the first studies utilizing brainstem reflexes in SLE patients. Further studies with a prospective design assessing clinical features with electrophysiological and imaging investigations would yield a better neuroanatomical correlation of these findings and would provide more precise topodiagnostic information about CNS dysfunction in SLE patients.
Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

REFERENCES